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Abstract: During a natural disaster, emergency responders have to quickly view many data types to
decide how to react. Currently, there isn’t a platform for the United States that contains all of this data.
With the abundance of hazardous industrial sites in the New England (NE) region, there is a need
for resources to guide emergency responders. We develop an interactive Shiny dashboard to help
emergency responders in NE make data-driven decisions on how to target their resources. We compile,
wrangle, and display open-source datasets with relevant geospatial, demographic, and weather
information. We develop and integrate into our dashboard a real-time machine learning framework
to predict, at a county level, whether or not a flash flood will occur with 93% accuracy, given date/time
and current weather conditions. Using Worcester County, MA we show our dashboard can help
emergency responders understand how environmental hazards and social factors interact within a
region.
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1. Introduction

During environmental disasters it is critical that emergency relief personnel are able to distribute
supplies to areas in need quickly and efficiently. These situations are time sensitive so it is important
that people are able to predict what areas will be affected and where relief efforts should be focused.
Combining weather alerts and background data on one platform allows emergency relief personnel
to avoid scanning weather channels themselves and keep track of information such as the locations
of hospitals and warehouses [1]. As climate change continues, natural disasters will become more
frequent and worsen [2]. Therefore, it is imperative that there is a system in place to assist relief workers
during these natural disasters and make their jobs easier. Hopefully it will also benefit populations,
especially vulnerable populations, by ensuring that the supplies they need get to them as soon as
possible in critical instances. Company has developed detailed dashboards for North Carolina, Florida,
Texas, and Louisiana, as well as a country-wide dashboard with some weather alerts. While this is
a good start, most states lack data on the vulnerability of populations, points of interest, or other
data that would provide response workers with background information to guide their responses
in the event of a disaster. Here, we compile this data for the New England region (Massachusetts,
Connecticut, Rhode Island, Maine, Vermont and New Hampshire). These states have some different
risk factors than the southern states with preexisting dashboards. For example, southern states are
mostly concerned with tropical cyclones, while the northern states are more susceptible to winter
storms. We design a dashboard that fixes many of these issues, focusing on data points relevant to the
Northeast.

New England experiences many extreme weather events including hurricanes, flooding, winter
storms, and droughts. As climate change progresses these events will become more frequent and
severe Between 1958 and 2012 there was more than a 70% increase in the amount of rainfall in heavy
precipitation events in the Northeast, which is more than anywhere else in the United States, and
projections indicate that precipitation will continue to increase [3]. Flooding events have also become
more common due to the increase in precipitation and extreme weather events [4]. The severity of
these flooding events are increasing, with 100-year flooding events now happening every 60 years,
and it is projected they will become even more frequent and occur every 10-20 years for the Atlantic
Coast in 2050 [4]. The Northeast also has some of the oldest buildings and infrastructure in the
United States [5]. This can be a compounding factor when combined with extreme weather events
and lead to more disastrous effects on local populations. Events with heavy precipitation can cause
sewer-stormwater systems in the Northeast to overload and discharge wastewater into bodies of water
used for drinking water [3]. The Northeast also contains hundreds of EPA-designated Superfund sites
[6]. When these sites are hit by weather events such as hurricanes and flooding the toxic chemicals in
them can contaminate waterways, affecting communities and farms [7]. Thus, increasingly extreme
weather events and their potential for contamination make New England a location of interest for
disaster preparedness work.

Climate change will have far reaching effects on human health, agriculture, and the ecosystems,
yet it will not affect all populations equally. Natural disasters have a disproportionate long-term impact
on vulnerable communities [8]. Low-income communities of color are often not able to evacuate and
their communities are more vulnerable to flooding due to worse infrastructure [8]. Additionally;,
EPA Superfund sites are disproportionately concentrated near low-income communities of color [9].
Furthermore, even after damage occurs, FEMA often gives more aid to white victims of natural
disasters versus people of color, even when the damage is the same [10]. Due to this disparity, we
also focus on compiling data into our dashboard that can help emergency personnel locate and direct
resources to socially vulnerable populations.

2. Data Sources

We gather data sources with variables relevant to our three main categories of interest:
environmental landmarks, flood risks, and social vulnerabulity. All of the data sources we choose to
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Figure 1. Population Density and Median Household Income from ACS

display are open source data sources, so they are accessible to anyone who wants to use them. Below
we describe the data sources and which categories their variables fall into. In general, we use data
that reports information at the county level for the six New England states: Massachusetts (MA),
Connecticut (CT), Maine (ME), New Hampshire (NH), Rhode Island (RI), and Vermont (VT).

2.1. 2019 American Community Survey

The American Community Survey (ACS) is an annual nationwide survey that helps guide federal
spending [11]. It collects information related to age, ancestry, place of birth, disability, educational
attainment, race and ethnicity, health insurance coverage, income, occupation, employment status,
housing and rent costs, sex, and housing, among other variables. We gather county-level information
to help guide our understanding of demographics and social vulnerability in New England. Key
variables in this dataset include county name, total population, population density (measured as
number of people per square mile), median household income (in 2021 inflation-adjusted dollars),
unemployment rate for the population 18 years and older, proportion of the population with a high
school diploma or equivalent, number of renter-occupied housing units, and the proportion of the
population that identifies with different racial and ethnic backgrounds (Table 1). The categories from
the ACS related to race and ethnicity that we use are: White alone, Black or African-American alone,
American Indian or Alaska Native alone, Asian alone, Native Hawaiian and other Pacific Islander
alone, Some other race alone, and Two or more races. This dataset has 68 observations (one per county)
and 31 variables (Table 1).

2.2. CDC Social Vulnerability Index

The Centers for Disease Control (CDC) assigns a Social Vulnerability Index (SVI) to each county
in the United States. The CDC defines social vulnerability as the resilience of communities (the
ability to survive and thrive) when confronted by external stresses on human health, stresses such
as natural or human-caused disasters, or disease outbreaks [12]. This metric draws from 15 different
variables recorded in the U.S Decennial Census Survey that relate to socioeconomic status, household
composition and disability, minority status and language, and housing type and transportation [12].
We obtain county-level SVI measures for each New England state, resulting in a dataframe with 68
observations and two key variables: county name and SVI (percentile from 0-1) (Table 1).
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Figure 2. Visualzation of the dams, landfills, and EPA Superfund sites data layers respectively

2.3. New England Dams Database

The New England Dams Database draws information from state environmental databases,the
Nature Conservancy’s Northeast Aquatic Connectivity Tool, the National Hydrography Dataset Plus,
the USGS National Land Cover Database, and the American Rivers’ Removed Dams Database [13].
Dam information is relevant for understanding flood risk, since dam failures can cause severe flooding
and aggravate other environmental hazards if floodwaters reach contaminated sites. There are 7,437
dams recorded in the current version of the database (downloaded 10/1/22) (Figure 1) and the relevant
variables for each dam are dam identification and location (in the form of coordinates), dam status
(Existing or Removed) and hazard classification (Negligible, Low, Moderate, Significant, or High)
(Table 1).

2.4. EPA Project and Landfill Database

This database tracks key information for landfill gas energy projects and municipal solid waste
landfills in the United States [14]. Landfill locations are relevant when floods or other similar disasters
occur, since damage to the landfill site can cause contamination in the local groundwater or drinking
water supply. We gather and join landfill locations for each New England state. Across New England,
there are 201 landfills recorded in the databases (Figure 2). The key information recorded for each
landfill includes landfill name, county, point coordinates, landfill status (Open or Closed), and waste
in place (measured in tons) (Table 1).

2.5. EPA Superfund Sites Database

For each New England state, we also gather point locations of EPA-designated hazardous sites [6].
Hazardous sites fall into three main categories: Superfund sites, Brownfield sites, and RCRA Corrective
Action sites. Superfund sites are toxic or hazardous locations designated through the Comprehensive
Environmental Response, Compensation, and Liability Act of 1980 that gives the EPA license to clean
up toxic sites and hold responsible parties financially accountable [6]. Brownfields are properties that
cannot be redeveloped or expanded because of environmental contamination [15]. RCRA-designated
sites include hazardous and non-hazardous waste sites that the Resource Conservation and Recovery
Act gives that EPA the right to oversee and manage [16]. Here, we focus on Superfund sites since they
generally pose the greatest environmental and human health risks of all three categories. Our dataset
of New England Superfund sites includes 1,338 observations and 9 variables, where each observation
is a site and the key variables are site name, county name, latitude, and longitude (Table 1).
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Figure 3. Social Vulnerability Index from CDC, floods per county calculated from NOAA Storm Events
Database

2.6. NOAA Storm Events Database

The NOAA Storm Events Database records the occurrence of storms and other significant or rare
weather events that have the potential to cause economic damage or loss of life [17]. The database
contains storm records dating back to 1950, though to limit the amount of missing records and to
recognize that climate change is quickly altering weather patterns, we restrict the database to only
include records from January 1st, 2018 to January 1, 2022. This dataset contains 8,324 observations
and 18 variables. Each observation is a weather event in New England within this date range, and key
variables for our analyses include county, state, year, month, day of the month, beginning time, and
event type.

2.7. NOAA Climate Data Online Database

The NOAA Climate Data Online database provides access to NOAA's archive of global climate
and weather data [18]. We use this database to obtain daily summaries for each county from all weather
stations in New England between January 1, 2018 and January 1, 2022. We restrict the data to this
date range so we could join it with data from the Historic Storms Database. Since the observations
in the Historic Storms Database represent one county on a given day, we average the observations
from all weather stations in a given county for a given day to facilitate data joining. There are 40,874
observations and eight variables in this dataset. The key variables are state, county, year, month,
day of the month, daily precipitation in inches, daily minimum temperature, and daily maximum
temperature.

2.8. MRLC Land Statistics Dataset

We obtain land statistics on a county level for New England counties from a dataset from MRLC
that was preprocessed to aggregate variables by county [19]. This dataset contains statistics gathered in
2019, and contains 67 observations and 10 variables. The variables are: county, land area in square feet,
water area in square feet, latitude, longitude, mean land slope in the county, mean land elevation in the
county, percent of the county area covered by water, percent of the county area covered by impervious
surfaces, and percent of the county area with tree cover.
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2.9. NWS API Web Service

We retrieve current temperature and precipitation conditions within Massachusetts via the
open-source National Weather Service API [20]. After processing the data retrieved (see Methods),
this dataset contains 14 observations—one per county—and three key variables: county, precipitation
within the last hour, and temperature.

Table 1. Descriptions of data sources.

Number of | Number of

Data Source Observationd Variables Key Variables: | Key ‘ Variables:
Character Numeric

2019 American

Community Survey | 68 31 County, State Total Population,

[11] Population Density
(persons/sq.
mile), Median
Household Income,
Unemployment
Rate, Educational
Attainment: ~ High
School or Higher,
Renter-occupied
Housing Units, Race

CDC Social

Vulnerability Index | 68 3 County, State SVI

[12]

New England Dams

7,437 80 Dam Name, Town, | Latitude, Longitude
Database [13] State, Dam Status,
Dam Hazard
EPA  Project and
Landfill Database | 201 16 Landfill Name, | Latitude, Longitude,
[14] Landfill Address, | Waste In Place (Tons)
County, State,
Current Landfill
Status
gl:gs;}; e[rzfil]nd Sites 1,338 9 Site  Name, Site | Latitude, Longitude
Address, City,
County, State, Interest
Types
NOAA Historic
Storm Events | 8,324 18 County, State, Event | Year, Month, Day,
Database [17] Type, Event Narrative | Begin Time
gﬁﬁ?geﬂ;?seel[jla;? 40,874 8 County, State, Year, | Daily Precipitation,
Month, Day Daily Minimum
Temperature,
Daily Maximum
Temperature
MRLC Land Statistics 67 10 County Latitude, Longitude,

Dataset [19] Land Area, Water

Area, Mean Slope,
Mean Elevation,
Percent Water
Coverage, Percent
Impervious Surfaces,
Percent Tree Cover

NWS API  Web

Service [20] 14 3 County Precipitation in the

past hour (inches),
Temperature (°F)
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3. Methods

3.1. Displaying data

To display the data layers that an emergency responder could need, we create a Shiny [22]
dashboard. The dashboard has a main panel containing a Leaflet map of New England and a sidebar
with a list of all the different data layers that users can add or remove from the map. Leaflet is a open
source Javascript library used to build maps, we utilized the Leaflet R package for our project [23]. The
layers we choose to display on our map of New England are dams, EPA superfund sites, landfills,
social vulnerability index (SVI), population density, median household income, and floods per county
since 2018. Dams, EPA Superfund sites, and landfills are all point data layers that we get from the
New England Dam Database [13], EPA Superfund Sites Database [21], and EPA Project and Landfill
Database [14] respectively. SVI, population density, median household income, and floods per county
since 2018 are all polygon data layers. The SVI data is from the Center for Disease Control, which
defines social vulnerability as the resilience of communities (the ability to survive and thrive) when
confronted by external stresses on human health, stresses such as natural or human-caused disasters,
or disease outbreaks [12]. The values for population density and median household income are from
2020 US census data [11], which we joined to a US county boundary shape file [24] after cleaning the
census data. To calculate the number of floods per county we use NOAA historical data sets [17]
between January 1, 2018 and January 1, 2022 and filter for all flash flooding events, which we then
sum per county, and join the results to a US county boundaries shape file. Finally, we developed a
layer that displays the predictions of our flash flood machine learning model based on current API
weather data for Massachusetts counties. The second tab of our dashboard contains a list of all the
different data sources with a description of each and where they can be found.

3.2. Modeling flash flood risks
3.2.1. Training on historical weather events

Data

We use binary classification techniques to predict, given county-level weather conditions with
date/time, precipitation, and temperature information, whether or not that county is at risk of a flash
flood. Fig. 4 shows an overview of our predictive modeling workflow. We train our classification
model using historic storm and weather data from New England between January 1, 2018 and January
1, 2022. We obtain historical datasets from NOAA [18, NOAA [17]]. Each observation in the training
dataset is a weather event. The target variable in the dataset is event type, which we recode a binary
variable that indicates that the weather event is a flash flood (1) or is not a flash flood (0). The other
variables in the dataset include geospatial information such as county FPS code, state FPS code, latitude,
and longitude, information on the event’s timing such as year, month, day of the month, and begin
and end time, and weather information such as average county-level precipitation on that day and
average minimum and maximum temperatures across the county on that day. We join this dataset
with land usage datasets from MRLC [19] which contain county-level statistics such as mean elevation,
mean slope, land area, water area, percent of land area with tree cover, and percent of land area with
impervious surfaces. We choose to include these variables in our analysis because factors like elevation
can influence which areas are prone to flash flooding, e.g. valleys or hollows, and the percentage of
area covered by impervious surfaces impacts the effectiveness of water absorption. The dataset we
begin the training process with has 14,832 observations and 20 variables.
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Figure 4. Overview of machine learning workflow. Gray boxes denote process steps, while
colored boxes underneath represent particular data sources or techniques used at each step. Blue
boxes represent datasets, yellow boxes represent feature selection techniques, green boxes represent
resampling techniques, and pink boxes represent models. Red box denotes final output used on
dashboard. Dashed horizontal line separates steps performed on historical weather datasets from steps
performed on current weather dataset.

Feature Selection

We use two methods to select the optimal set of features from our historical weather dataset to
predict flash floods. First, we compute a correlation matrix among all features and identify highly
correlated features—which we define as features with Ir| > 0.9—using the highlyCorrelated()
function from the corrplot R package [25]. We remove highly correlated features from the historical
weather dataset. Second, we use a recursive feature elimination algorithm to identify the features
with the highest predictive power. Recursive feature elimination (RFE) works iteratively by fitting a
machine learning model, ranking features’ importance, and removing the least important features until
a specified number of features is reached. We implement RFE on our historical weather dataset using
the rfe () function from the caret R package [26]. We identify the optimal features for models with
between one and 12 features and compute the model accuracy on the historical weather dataset with
10-fold cross-validation. We retain the optimal features from the model size that yields the highest
cross-validation accuracy to produce a training dataset.

Resampling

The initial training dataset is highly imbalanced; only 7% of observations come from the
positive class, which reflects the fact that most weather events in New England are not flash floods.
Imbalanced datasets make classification tasks more difficult since most models often struggle to predict
observations from the minority class correctly. One way to mitigate the effect of class imbalance is
through resampling techniques, which balance the class distribution in the training dataset either
by undersampling the majority class or oversampling the minority class. Since we do not want
to reduce the size of our training dataset, we choose to use oversampling techniques. We test
four oversampling techniques: Random oversampling, Synthetic minority oversampling technique
(SMOTE), Borderline-SMOTE, and Adaptive synthetic oversampling (ADASYN), which we implement
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using the smotefamily R package [27]. Random oversampling samples with replacement from the
minority class so that there are equal numbers of observations from both classes. SMOTE balances
the class distribution by creating synthetic minority class observations [28]. For a given minority
observation, it identifies the five nearest neighbors that are also minority observations. Depending on
the degree of class imbalance in the dataset, it randomly selects a subset of the neighbor observations
and creates synthetic points along the lines in feature space between the original observation and the
neighbor observations [28]. Borderline-SMOTE is a SMOTE variant that works similarly, except that it
only creates synthetic examples from observations that are near the border between the majority and
minority classes in feature space [29]. ADASYN also creates synthetic observations in a similar manner
to SMOTE, except that the number of synthetic observations generated per minority observation
depends on the class distribution of its surrounding observations [30]. First, ADASYN finds the class
distribution among the five nearest neighbors to a minority example and calculates the proportion of
majority examples in the neighborhood. This proportion controls the number of neighbor minority
observations that are sampled to create synthetic observations, such that more synthetic observations
are created around isolated minority observations. Intuitively, this means that the ADASYN algorithm
balances the class distribution by focusing on ‘hard to learn” observations [30].

Model fitting

We test two types of supervised classification models on the training dataset. The first is a
support vector machine (SVM). For a dataset with N features, an SVM attempts to find a hyperplane in
N-dimensional space that separates the two classes in a dataset [31]. The second classification model
is a random forest classifier. Random forest is an ensemble method, meaning that its prediction for
an observation is an aggregate of multiple individual models’ predictions for the same observation.
The individual models in Random Forest are decision trees, which are flowchart-like structures in
which each node represents a feature, each branch represents a decision rule, and each leaf represents
an outcome [32]. Random Forest builds a specified number of decision trees to make predictions for
observations in the training dataset, and averages the outcomes to obtain a final prediction for a given
observation. We apply each model to the training dataset and make predictions on the testing dataset
using 10-fold cross validation. We measure the true positive rate, true negative rate, false positive
rate, false negative rate, and balanced accuracy for each model. True positive rate is the proportion
of positive testing examples that are correctly predicted, and true negative rate is the proportion of
negative testing examples that are correctly predicted. Conversely, false positive rate is the proportion
of negative testing examples that are incorrectly predicted, and false negative rate is the proportion
of positive testing examples that are incorrectly predicted. Balanced accuracy, which is the average
of the true positive and true negative rates, is a more useful metric for imbalanced datasets than true
accuracy, since it captures performance on both classes.

Hyperparameter Tuning

We define the optimal hyperparameters for a model as those which maximize its balanced
accuracy. We select optimal hyperparameters using a grid search, which tests all possible combinations
of supplied hyperparameter values. For the SVM classifier, we optimize three hyperparameters:
kernel, gamma, and cost. The kernel choice determines the shape of the hyperplane that forms the
decision boundary. The gamma parameter controls the curvature of the decision boundary, and is
applicable only to non-linear kernels. The cost parameter controls the strictness of the model penalty
for misclassification. For the Random Forest classifier, we optimize two hyperparameters: number of
trees and mtry. Number of trees controls the number of decision trees that are built and averaged to
determine a final prediction. Mtry controls the number of features that are sampled at each split in the
decision tree.
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3.2.2. Integrating current weather conditions

In order to integrate the current weather conditions we utilize the National Weather Service’s
(NWS) AP, as detailed in the following section.

Accessing National Weather Service API

To apply our predictive model to real time weather data, we use the National Weather Service’s
weather observations API. We call the API on each of Massachusetts’ 26 weather observation zones.
Each API call for a zone yields the current weather conditions for each of the many weather stations
within the given zone. We specifically retrieve two different attributes for each station: temperature
(which we convert from Celsius to Fahrenheit), and precipitation in the last hour. Since our goal is to
predict flash flood risks at the county level, we average the observations for every weather station in
a county. After obtaining and processing current weather conditions from the NWS API, we add in
variables for location and date and time that the data was gathered. Thus, we have a dataset with the
same features as our training dataset for the predictive model.

Predicting flash flood risks

We generate real-time flood risk predictions at a county level in Massachusetts. When a user
loads the dashboard, we call a single function that completes the API calls and data processing tasks
described above to output a dataset with temperature and precipitation in the past hour by county.
We add additional variables relating to event timing such that the current weather dataset has the
same set of features as our flood modeling training dataset. We load the tuned classification model
optimized to historical storm data and generate a binary prediction per county, denoting whether
or not the current weather conditions pose a flash flood risk in that county. We add this prediction
variable to the dataset with timing and weather conditions and return this dataset so it can be used as
a layer on the dashboard.

4. Results

4.1. Displaying data

To display data regarding natural disasters to our users we develop a Shiny dashboard with an
integrated Leaflet map. Figures 5 and 6 show the two main tabs of the dashboard. Fig. 5 depicts the
main panel where users can interact with the different map layers, and Fig. 6 shows the second tab
where users can learn more about the data sources incorporated into the dashboard. The user can
interact with the check boxes on the left side of the panel and add/remove the different data layers to
the map. For all of the layers, users can interact with it by clicking on a data point on the map and a
popup will appear showing the location of the data point and the specific value of the data point for
that layer. An image of each of the data layers can be found in the Data section of this paper along
with its description. We also published our dashboard on the shinyapps.io server so it is accessible to
the public. After analyzing our dashboard, we propose a few areas of significance to disaster relief
personnel. These areas might either be more prone to a natural disaster or be more susceptible to
damage if a natural disaster did occur. Fairfield CT, Essex, MA, Middlesex, MA, and Worcester, MA
have a high population and have had frequent floods since 2018, which makes them potential areas of
interest. It's worth noting that we are only measuring the frequency of floods, not how much damage
floods do. Different magnitudes of floods can have drastically different effects, so this is only an
approximation. There are also some counties throughout New England with high SVIs. This means
that these communities are less resilient in the face of natural disasters and diseases, and could be
more impacted by severe weather, so they are also points of interest for disaster relief personnel.

4.2. Modeling flash flood risks
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4.2.1. Training on historical weather events

We develop a predictive model that can predict, at a county level, whether or not current weather
conditions pose a flash flood risk. Our audience for this model are first responders who want to
prepare their flood responses in advance once a weather event is imminent. Ideally, we want a model
with high balanced accuracy that performs well for both classes in the dataset. A model with a high
true positive rate, or recall, is desirable because it means first responders will enter the fewest flash
flood events unprepared. A model with a high true negative rate is also desirable because it means
that first responders will not waste resources or unnecessarily alarm the public when there is no flash
flood imminent.

Data

Our initial training dataset contains 20 variables and 1,889 observations, each of which represents
a weather event. Of all observations, 7% are flash floods, and 93% are not flash floods. All of the flash
floods in this dataset occurred in either Connecticut, Massachusetts, or Maine, likely because these
states have the largest coastlines. 31 flash floods occurred in Massachusetts, 82 in Connecticut, and 8 in
Maine. Of the four years of weather events included in this dataset, the most flash floods happened in
2021 (60), followed by 2018 (45). The most common times for flash floods to occur were during the
months of September (57), July (35), August (22), and June (10). Only two flash flood events occurred
outside these months, both during April. Given that flash flood events are restricted to only a subset
of states and a subset of months during the year, we restrict the training dataset to weather events
that occur during April through October and in Massachusetts, Connecticut, or Maine, reasoning that
our model will likely yield more meaningful flash flood prediction results if it is trained on a more
representative dataset of weather events that might be flash floods. After restricting this dataset, we
are left with 1,202 observations.
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Figure 7. Correlation matrix of training data features.

Feature selection

We begin with a training dataset with 20 variables and 1,202 observations. When we compute a
correlation matrix across all features (Fig. 7), we find that the variables denoting longitude, state, and
minimum daily temperature have correlations greater than 10.9| with other variables. This makes
sense intuitively because longitude is naturally highly correlated with latitude since we are focused on
a small geographic area, and similarly, states are associated with particular counties and minimum
temperatures are correlated with maximum temperatures. We concatenate state and county into a
single numeric variable, since county codes are repeated across states and we want a unique identifier
for each county. We remove the other highly correlated features from the training dataset, along with
the ending time variable, which has a similar correlation pattern with the beginning time variable. We
also remove the variable denoting the year of the weather event; this is ultimately not relevant since
we hope to make predictions on current weather events beyond the end of 2021.

We further restrict the feature set to the most informative features by performing recursive feature
elimination with 10-fold cross validation. We find that a model with five features produces the highest
cross-validation accuracy of 96% (Fig. 9). The five features are: daily precipitation, month, maximum
temperature, day of the month, and beginning time. Intuitively, daily precipitation makes sense as
an important feature for flash flood modeling, and as we described above, flash floods are usually
restricted to a subset of months. The median daily maximum temperature is slightly lower for days
with flash floods than days without flash floods (75° F vs. 80° F), although the overall distributions
are similar across both classes. Furthermore, more floods overall have occurred at the beginnings and
ends of the month in the past four years than dates in the middle of the month. Intuitively, since all of
the flash floods in our training dataset occurred in states with large coastlines, it is possible that the
timing of floods across the month is linked to tidal cycles. We display the relationships between each
individual predictor and flash flood occurrence in Fig. 9.

Modeling

To develop our model, we split the dataset 60/40 into a training set and a testing set (Fig. 4). Each
set has the same features. We develop and tune all combinations of two classification algorithms and
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[ ()
(s (s
& &
& & 154
S 407 S
[aV) N 104
< c
3 201 3
o O 51 l
kel kel
g .l = B g . -.H d
12345678 9101112 0 10 20 30
o Month Day of Month
s
° = ° 0
g S
S0 = . L ]
Q - [ ] .
£ 3 24 :
& 60 3
% a1
= 404 hd =§
= . Q 0 : ;
s 0 1 0 1
Flood Flood
® 2000
£
= >
' 2 1000
gL
& 5001
m
O_ T T
0 1
Flood

Figure 9. Individual relationships between each model feature and flash flood occurrence. Barplots
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distributions of numerical features between flash flood events and other weather events
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Table 2. SVM Classification Results. We test two different kernels—radial and linear—and tune the
gamma and cost hyperparameters; in all experiments we achieve the best accuracy with a radial kernel
and a gamma value of 10, and we achieve the best accuracy with a cost of 100 for all experiments except
SVM with Borderline-SMOTE resampling, where we use a cost of 10.

Resampling Balanced Accuracy | True Positive Rate | True Negative Rate
None 71% 42% 99%
Random Oversampling | 72% 48% 97%
SMOTE 75% 52% 98%
ADASYN 78% 58% 98%
Borderline-SMOTE 78% 58% 98%

Table 3. Random Forest Classification Results

Resampling Balanced Accuracy | True Positive Rate | True Negative Rate | Mtry | Number of Trees
None 86% 75% 96% 3 700
Random Oversampling | 85% 74% 96% 4 200
SMOTE 75% 61% 96% 1 100
ADASYN 80% 65% 96% 2 300
Borderline-SMOTE 85% 75% 95% 2 200

four resampling techniques to find the model that will have the highest flash flood prediction accuracy.
For SVM classifiers, we find that the radial kernel always produces superior performance, indicating
that our data does not have a linear decision boundary. We achieve maximum performance when
we use the ADASYN algorithm to balance the class distribution in the training dataset. The model
achieves an 78% balanced accuracy, with a 58% true positive rate and 98% true negative rate (Table 2).
In this context, the model correctly predicts 58% of flash flood events and correctly predicts 98% of
non-flash-flood weather events. The optimal parameters for this model are a gamma value of 10 and a
cost value of 100. With a RandomForest classifier, interestingly, we achieve maximum performance
when we do not use resampling techniques. Without resampling, with an mtry value of 3, and with
700 decision trees, we achieve 86% balanced accuracy, with a 75% true positive rate and 96% true
negative rate (Table 3). While the true negative rate is slightly lower for RandomForest than it is for
SVM, RandomForest achieves a substantially better recall, which is important for our use case. Since it
produces a higher balanced accuracy, we use the optimal RandomForest model to make flash flood
predictions for current weather conditions.

4.2.2. Integrating current weather conditions

Each time a user loads the dashboard, we call a single function that retrieves a dataset of current
temperature and precipitation conditions in Massachusetts from the NWS API. The function then
averages these conditions by county, and we add additional date/time variables so that we are left
with a dataset containing the same features as our training dataset of historical data. Using the
tuned RandomForest model described above, we predict whether or not each Massachusetts county
is currently at risk of a flash flood. The binary prediction results are a layer that users can view on
the dashboard. During development, we validated the temperature and precipitation measurements
that we retrieve against reports from The Weather Channel to ensure that our API calls are accurate.
During the development period (late November - early December 2022) our model did not predict that
any county was at risk of a flash flood; this validates the low false positive rate we obtained during
our training process. In order to ensure that our model can make positive predictions, we generate a
simulated dataset that reconstructs the weather conditions on July 17, 2018, during which flash floods
occurred in Worcester and Suffolk Counties. We find that our model correctly predicts flash flood risks
in these counties (Fig. 10).
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Figure 10. Reconstruction of the flash flood prediction dashboard layer on July 17, 2018, during which
flash floods occurred in Worcester and Suffolk counties.

4.3. Case Study: Worcester County, MA

A potential use of our dashboard is to highlight possible areas of interest for natural disasters that
emergency relief workers should pay attention to. Overlaying the layers on the dashboard can point
out vulnerable areas. For example, Worcester County, MA has a SVI of .6923, 27 floods since 2018,
a population density of 570.68 people per square mile, and a median household income of $79,142.
Worcester has over 100 high-hazard dams (indicated by red dots on the dashboard), 45 EPA Superfund
Sites, and 10 landfills.

On July 17, 2018, Worcester County had a devastating flash flood, shortly before the evening rush
hour commute. Storm drains failed leading to flooded streets, sweeping away debris and dirt, and
surrounding cars. With mass power outages impacting more than 3,000 households, civilians were left
stranded and unprepared.

If any of the many high-hazard dams failed on this day, the consequences would have been
devastating. Landfill sites, of which Worcester has many, have increased ground erosion, as well
as an increased likelihood of leaching waste into the surrounding area. Superfund sites are already
vulnerable to flooding, as they contain some of the most contaminated environments. As a county,
Worcester has a high number of all of these potentially destructive areas. After inputting the weather
data from the day of incidence, our dashboard’s model would have predicted the Worcester County
flash flood, and could have better prepared households and emergency response workers to mitigate
the effects on their neighborhoods and the environment.

5. Discussion

Here, we consolidate relevant landmarks, demographic, and weather datasets into an interactive
dashboard designed to help emergency responders in New England make data-driven decisions
on where to direct time and resources during a natural disaster. By combining different datasets
containing locations of environmental hazards and social vulnerability metrics, we can show first
responders where multiple features overlap and elevate risks from severe weather. We also develop a
RandomForest model that provides accurate, real-time predictions of flash flood risks at a county level
in Massachusetts. Lastly, we use Worcester County, MA as a case study to illustrate the benefits that
our product can provide to local emergency workers.

We overcame several challenges in the making of this dashboard. We experimented with other
map layers that we ultimately did not incorporate because of missing data; for instance, we hoped
to visualize hurricane/tsunami evacuation routes in each NE state but these are only available for
Connecticut. This reflects a broader dilemma that other developers face, which is that the rich data
sources needed to build a compelling dashboard do not always exist in regions that could benefit most
from this product. Additionally, we navigated a data wrangling challenge when integrating current
weather conditions from NWS into the dashboard. This dataset is quite large given the number of


Rectangle


Version December 21, 2022 16 of 18

weather stations within New England, which is why we focus on flash flood risks within Massachusetts
as a proof-of-concept. Weather observation zones (which can contain many weather stations) do not
always fit neatly within county boundaries, and the number of zones per county varies. By researching
the locations of weather observation zones, we were able to match the relevant Massachusetts zones to
a county, and average weather conditions across stations to yield county-level estimates.

We note that there are several limitations and ethical considerations that are important to keep
in mind when using the dashboard. For example, we use static datasets to visualize the landmarks
and demographic variables on the dashboard rather than continuously retrieving current data via
an API to reduce computational burden. While dam and landfill locations are constant, dam hazard
status or waste in place at a landfill may change over time, so we cannot guarantee the most up-to-date
information for those variables at all times. There are also several caveats to our predictive model.
First, during the training process we restrict the training dataset to weather events within a subset
of months and states—based on the distributions of where and when flash floods occurred between
2018-2022—in order to reduce class imbalance. This makes the model’s predictions more accurate for
the majority of flash floods, but it may result in poorer performance on rare flash flood events. For
instance, under our model a flash flood in August on an 85° day has a better likelihood of detection
than a flash flood in January on a 45° day. Second, since we average all current weather observations
within a county and make predictions at a county level, our model may be less sensitive to localized
extreme weather. Thus, we recommend that users keep these limitations in mind when preparing for
flash flood conditions, and supplement our dashboard with more granular weather forecasts.

There are some ethical considerations in the usage of our dashboard. The primary purpose of this
dashboard is to inform relief workers of relevant weather conditions and environmental hazards, and
to make sure that resources are going to communities that face the greatest health and property risks. If
the data sources and/or models are flawed, we risk promoting an inequitable distribution of resources.
This is one of the reasons why we chose to use open-access datasets, primarily from governmental
sources where we can access information about how the data were collected. However, we cannot
guarantee that the sampling or surveying processes used to collect these datasets were unbiased. There
is also the low possibility of false positives under our flash flood model, which could waste emergency
responders’ time and resources and create unnecessary public alarm. This is why we optimized our
models to have high prediction accuracy for flash flood and non-flash-flood events. Finally, there is the
consideration of how responders would use the data, possibly ignoring which communities are most
vulnerable and instead choosing to prioritize areas where they are more concerned about monetary
losses.

Future directions for this project include expansion of our flash flood modeling, seasonal
customization, and integration of social media trends. We would like to extend our flash flood
predictions, which we currently restrict to MA counties, to the rest of NE states. It would also be
interesting to make more granular predictions, such as flash flood risks at a zip code level, which
Company employees have successfully implemented in Florida using similar model features. From a
technical standpoint, this extension is feasible for NE states. However, we anticipate that our training
data may be insufficient, since flash floods are rare in most NE areas, especially compared to Florida
where tropical storms are more frequent. Additionally, since New England experiences extreme
seasons, there are distinct types of natural disasters that relief workers must prepare for. Here, we
primarily highlight variables relevant for flooding events, which tend to occur in warmer months.
We would like to add additional layers and filters to the dashboard so that users can customize it to
the season. For instance, we could implement a similar predictive model to visualize which regions
are at risk of heavy snowfall. We could add more landmarks such as the locations of shelters where
people can find warmth and resources in the event of a wintertime power outage. Lastly, since socially
vulnerable communities face greater risks during a disaster and may be overlooked by mainstream
media coverage, social media updates could be a valuable source of insight into these communities’


Rectangle


473

481

482

483

484

485

486

487

496

497

498

499

500

501

Version

needs
topics

December 21, 2022 17 of 18

. We would like to mine geotagged posts via the Twitter API to display which hashtags and

are trending in a given region during extreme weather events.

Abbreviations

The following abbreviations are used in this manuscript:

NOAA National Oceanic Atmospheric Administration

NE New England

MRLC  Multi-Resolution Land Characteristics Consortium

NWS National Weather Service

SVM Support Vector Machine

SVI Social Vulnerability Index
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