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Abstract: During a natural disaster, emergency responders have to quickly view many data types to1

decide how to react. Currently, there isn’t a platform for the United States that contains all of this data.2

With the abundance of hazardous industrial sites in the New England (NE) region, there is a need3

for resources to guide emergency responders. We develop an interactive Shiny dashboard to help4

emergency responders in NE make data-driven decisions on how to target their resources. We compile,5

wrangle, and display open-source datasets with relevant geospatial, demographic, and weather6

information. We develop and integrate into our dashboard a real-time machine learning framework7

to predict, at a county level, whether or not a flash flood will occur with 93% accuracy, given date/time8

and current weather conditions. Using Worcester County, MA we show our dashboard can help9

emergency responders understand how environmental hazards and social factors interact within a10

region.11
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1. Introduction12

During environmental disasters it is critical that emergency relief personnel are able to distribute13

supplies to areas in need quickly and efficiently. These situations are time sensitive so it is important14

that people are able to predict what areas will be affected and where relief efforts should be focused.15

Combining weather alerts and background data on one platform allows emergency relief personnel16

to avoid scanning weather channels themselves and keep track of information such as the locations17

of hospitals and warehouses [1]. As climate change continues, natural disasters will become more18

frequent and worsen [2]. Therefore, it is imperative that there is a system in place to assist relief workers19

during these natural disasters and make their jobs easier. Hopefully it will also benefit populations,20

especially vulnerable populations, by ensuring that the supplies they need get to them as soon as21

possible in critical instances. Company has developed detailed dashboards for North Carolina, Florida,22

Texas, and Louisiana, as well as a country-wide dashboard with some weather alerts. While this is23

a good start, most states lack data on the vulnerability of populations, points of interest, or other24

data that would provide response workers with background information to guide their responses25

in the event of a disaster. Here, we compile this data for the New England region (Massachusetts,26

Connecticut, Rhode Island, Maine, Vermont and New Hampshire). These states have some different27

risk factors than the southern states with preexisting dashboards. For example, southern states are28

mostly concerned with tropical cyclones, while the northern states are more susceptible to winter29

storms. We design a dashboard that fixes many of these issues, focusing on data points relevant to the30

Northeast.31

New England experiences many extreme weather events including hurricanes, flooding, winter32

storms, and droughts. As climate change progresses these events will become more frequent and33

severe Between 1958 and 2012 there was more than a 70% increase in the amount of rainfall in heavy34

precipitation events in the Northeast, which is more than anywhere else in the United States, and35

projections indicate that precipitation will continue to increase [3]. Flooding events have also become36

more common due to the increase in precipitation and extreme weather events [4]. The severity of37

these flooding events are increasing, with 100-year flooding events now happening every 60 years,38

and it is projected they will become even more frequent and occur every 10-20 years for the Atlantic39

Coast in 2050 [4]. The Northeast also has some of the oldest buildings and infrastructure in the40

United States [5]. This can be a compounding factor when combined with extreme weather events41

and lead to more disastrous effects on local populations. Events with heavy precipitation can cause42

sewer-stormwater systems in the Northeast to overload and discharge wastewater into bodies of water43

used for drinking water [3]. The Northeast also contains hundreds of EPA-designated Superfund sites44

[6]. When these sites are hit by weather events such as hurricanes and flooding the toxic chemicals in45

them can contaminate waterways, affecting communities and farms [7]. Thus, increasingly extreme46

weather events and their potential for contamination make New England a location of interest for47

disaster preparedness work.48

Climate change will have far reaching effects on human health, agriculture, and the ecosystems,49

yet it will not affect all populations equally. Natural disasters have a disproportionate long-term impact50

on vulnerable communities [8]. Low-income communities of color are often not able to evacuate and51

their communities are more vulnerable to flooding due to worse infrastructure [8]. Additionally,52

EPA Superfund sites are disproportionately concentrated near low-income communities of color [9].53

Furthermore, even after damage occurs, FEMA often gives more aid to white victims of natural54

disasters versus people of color, even when the damage is the same [10]. Due to this disparity, we55

also focus on compiling data into our dashboard that can help emergency personnel locate and direct56

resources to socially vulnerable populations.57

2. Data Sources58

We gather data sources with variables relevant to our three main categories of interest:59

environmental landmarks, flood risks, and social vulnerabulity. All of the data sources we choose to60
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Figure 1. Population Density and Median Household Income from ACS

display are open source data sources, so they are accessible to anyone who wants to use them. Below61

we describe the data sources and which categories their variables fall into. In general, we use data62

that reports information at the county level for the six New England states: Massachusetts (MA),63

Connecticut (CT), Maine (ME), New Hampshire (NH), Rhode Island (RI), and Vermont (VT).64

2.1. 2019 American Community Survey65

The American Community Survey (ACS) is an annual nationwide survey that helps guide federal66

spending [11]. It collects information related to age, ancestry, place of birth, disability, educational67

attainment, race and ethnicity, health insurance coverage, income, occupation, employment status,68

housing and rent costs, sex, and housing, among other variables. We gather county-level information69

to help guide our understanding of demographics and social vulnerability in New England. Key70

variables in this dataset include county name, total population, population density (measured as71

number of people per square mile), median household income (in 2021 inflation-adjusted dollars),72

unemployment rate for the population 18 years and older, proportion of the population with a high73

school diploma or equivalent, number of renter-occupied housing units, and the proportion of the74

population that identifies with different racial and ethnic backgrounds (Table 1). The categories from75

the ACS related to race and ethnicity that we use are: White alone, Black or African-American alone,76

American Indian or Alaska Native alone, Asian alone, Native Hawaiian and other Pacific Islander77

alone, Some other race alone, and Two or more races. This dataset has 68 observations (one per county)78

and 31 variables (Table 1).79

2.2. CDC Social Vulnerability Index80

The Centers for Disease Control (CDC) assigns a Social Vulnerability Index (SVI) to each county81

in the United States. The CDC defines social vulnerability as the resilience of communities (the82

ability to survive and thrive) when confronted by external stresses on human health, stresses such83

as natural or human-caused disasters, or disease outbreaks [12]. This metric draws from 15 different84

variables recorded in the U.S Decennial Census Survey that relate to socioeconomic status, household85

composition and disability, minority status and language, and housing type and transportation [12].86

We obtain county-level SVI measures for each New England state, resulting in a dataframe with 6887

observations and two key variables: county name and SVI (percentile from 0-1) (Table 1).88
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Figure 2. Visualzation of the dams, landfills, and EPA Superfund sites data layers respectively

2.3. New England Dams Database89

The New England Dams Database draws information from state environmental databases,the90

Nature Conservancy’s Northeast Aquatic Connectivity Tool, the National Hydrography Dataset Plus,91

the USGS National Land Cover Database, and the American Rivers’ Removed Dams Database [13].92

Dam information is relevant for understanding flood risk, since dam failures can cause severe flooding93

and aggravate other environmental hazards if floodwaters reach contaminated sites. There are 7,43794

dams recorded in the current version of the database (downloaded 10/1/22) (Figure 1) and the relevant95

variables for each dam are dam identification and location (in the form of coordinates), dam status96

(Existing or Removed) and hazard classification (Negligible, Low, Moderate, Significant, or High)97

(Table 1).98

2.4. EPA Project and Landfill Database99

This database tracks key information for landfill gas energy projects and municipal solid waste100

landfills in the United States [14]. Landfill locations are relevant when floods or other similar disasters101

occur, since damage to the landfill site can cause contamination in the local groundwater or drinking102

water supply. We gather and join landfill locations for each New England state. Across New England,103

there are 201 landfills recorded in the databases (Figure 2). The key information recorded for each104

landfill includes landfill name, county, point coordinates, landfill status (Open or Closed), and waste105

in place (measured in tons) (Table 1).106

2.5. EPA Superfund Sites Database107

For each New England state, we also gather point locations of EPA-designated hazardous sites [6].108

Hazardous sites fall into three main categories: Superfund sites, Brownfield sites, and RCRA Corrective109

Action sites. Superfund sites are toxic or hazardous locations designated through the Comprehensive110

Environmental Response, Compensation, and Liability Act of 1980 that gives the EPA license to clean111

up toxic sites and hold responsible parties financially accountable [6]. Brownfields are properties that112

cannot be redeveloped or expanded because of environmental contamination [15]. RCRA-designated113

sites include hazardous and non-hazardous waste sites that the Resource Conservation and Recovery114

Act gives that EPA the right to oversee and manage [16]. Here, we focus on Superfund sites since they115

generally pose the greatest environmental and human health risks of all three categories. Our dataset116

of New England Superfund sites includes 1,338 observations and 9 variables, where each observation117

is a site and the key variables are site name, county name, latitude, and longitude (Table 1).118
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Figure 3. Social Vulnerability Index from CDC, floods per county calculated from NOAA Storm Events
Database

2.6. NOAA Storm Events Database119

The NOAA Storm Events Database records the occurrence of storms and other significant or rare120

weather events that have the potential to cause economic damage or loss of life [17]. The database121

contains storm records dating back to 1950, though to limit the amount of missing records and to122

recognize that climate change is quickly altering weather patterns, we restrict the database to only123

include records from January 1st, 2018 to January 1, 2022. This dataset contains 8,324 observations124

and 18 variables. Each observation is a weather event in New England within this date range, and key125

variables for our analyses include county, state, year, month, day of the month, beginning time, and126

event type.127

2.7. NOAA Climate Data Online Database128

The NOAA Climate Data Online database provides access to NOAA’s archive of global climate129

and weather data [18]. We use this database to obtain daily summaries for each county from all weather130

stations in New England between January 1, 2018 and January 1, 2022. We restrict the data to this131

date range so we could join it with data from the Historic Storms Database. Since the observations132

in the Historic Storms Database represent one county on a given day, we average the observations133

from all weather stations in a given county for a given day to facilitate data joining. There are 40,874134

observations and eight variables in this dataset. The key variables are state, county, year, month,135

day of the month, daily precipitation in inches, daily minimum temperature, and daily maximum136

temperature.137

2.8. MRLC Land Statistics Dataset138

We obtain land statistics on a county level for New England counties from a dataset from MRLC139

that was preprocessed to aggregate variables by county [19]. This dataset contains statistics gathered in140

2019, and contains 67 observations and 10 variables. The variables are: county, land area in square feet,141

water area in square feet, latitude, longitude, mean land slope in the county, mean land elevation in the142

county, percent of the county area covered by water, percent of the county area covered by impervious143

surfaces, and percent of the county area with tree cover.144
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2.9. NWS API Web Service145

We retrieve current temperature and precipitation conditions within Massachusetts via the146

open-source National Weather Service API [20]. After processing the data retrieved (see Methods),147

this dataset contains 14 observations—one per county—and three key variables: county, precipitation148

within the last hour, and temperature.149

Table 1. Descriptions of data sources.

Data Source Number of
Observations

Number of
Variables Key Variables:

Character
Key Variables:
Numeric

2019 American
Community Survey
[11]

68 31 County, State Total Population,
Population Density
(persons/sq.
mile), Median
Household Income,
Unemployment
Rate, Educational
Attainment: High
School or Higher,
Renter-occupied
Housing Units, Race

CDC Social
Vulnerability Index
[12]

68 3 County, State SVI

New England Dams
Database [13] 7,437 80 Dam Name, Town,

State, Dam Status,
Dam Hazard

Latitude, Longitude

EPA Project and
Landfill Database
[14]

201 16 Landfill Name,
Landfill Address,
County, State,
Current Landfill
Status

Latitude, Longitude,
Waste In Place (Tons)

EPA Superfund Sites
Database [21] 1,338 9 Site Name, Site

Address, City,
County, State, Interest
Types

Latitude, Longitude

NOAA Historic
Storm Events
Database [17]

8,324 18 County, State, Event
Type, Event Narrative

Year, Month, Day,
Begin Time

NOAA Climate Data
Online Database [18] 40,874 8 County, State, Year,

Month, Day
Daily Precipitation,
Daily Minimum
Temperature,
Daily Maximum
Temperature

MRLC Land Statistics
Dataset [19] 67 10 County Latitude, Longitude,

Land Area, Water
Area, Mean Slope,
Mean Elevation,
Percent Water
Coverage, Percent
Impervious Surfaces,
Percent Tree Cover

NWS API Web
Service [20] 14 3 County Precipitation in the

past hour (inches),
Temperature (ºF)
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3. Methods150

3.1. Displaying data151

To display the data layers that an emergency responder could need, we create a Shiny [22]152

dashboard. The dashboard has a main panel containing a Leaflet map of New England and a sidebar153

with a list of all the different data layers that users can add or remove from the map. Leaflet is a open154

source Javascript library used to build maps, we utilized the Leaflet R package for our project [23]. The155

layers we choose to display on our map of New England are dams, EPA superfund sites, landfills,156

social vulnerability index (SVI), population density, median household income, and floods per county157

since 2018. Dams, EPA Superfund sites, and landfills are all point data layers that we get from the158

New England Dam Database [13], EPA Superfund Sites Database [21], and EPA Project and Landfill159

Database [14] respectively. SVI, population density, median household income, and floods per county160

since 2018 are all polygon data layers. The SVI data is from the Center for Disease Control, which161

defines social vulnerability as the resilience of communities (the ability to survive and thrive) when162

confronted by external stresses on human health, stresses such as natural or human-caused disasters,163

or disease outbreaks [12]. The values for population density and median household income are from164

2020 US census data [11], which we joined to a US county boundary shape file [24] after cleaning the165

census data. To calculate the number of floods per county we use NOAA historical data sets [17]166

between January 1, 2018 and January 1, 2022 and filter for all flash flooding events, which we then167

sum per county, and join the results to a US county boundaries shape file. Finally, we developed a168

layer that displays the predictions of our flash flood machine learning model based on current API169

weather data for Massachusetts counties. The second tab of our dashboard contains a list of all the170

different data sources with a description of each and where they can be found.171

3.2. Modeling flash flood risks172

3.2.1. Training on historical weather events173

Data174

We use binary classification techniques to predict, given county-level weather conditions with175

date/time, precipitation, and temperature information, whether or not that county is at risk of a flash176

flood. Fig. 4 shows an overview of our predictive modeling workflow. We train our classification177

model using historic storm and weather data from New England between January 1, 2018 and January178

1, 2022. We obtain historical datasets from NOAA [18, NOAA [17]]. Each observation in the training179

dataset is a weather event. The target variable in the dataset is event type, which we recode a binary180

variable that indicates that the weather event is a flash flood (1) or is not a flash flood (0). The other181

variables in the dataset include geospatial information such as county FPS code, state FPS code, latitude,182

and longitude, information on the event’s timing such as year, month, day of the month, and begin183

and end time, and weather information such as average county-level precipitation on that day and184

average minimum and maximum temperatures across the county on that day. We join this dataset185

with land usage datasets from MRLC [19] which contain county-level statistics such as mean elevation,186

mean slope, land area, water area, percent of land area with tree cover, and percent of land area with187

impervious surfaces. We choose to include these variables in our analysis because factors like elevation188

can influence which areas are prone to flash flooding, e.g. valleys or hollows, and the percentage of189

area covered by impervious surfaces impacts the effectiveness of water absorption. The dataset we190

begin the training process with has 14,832 observations and 20 variables.191
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Figure 4. Overview of machine learning workflow. Gray boxes denote process steps, while
colored boxes underneath represent particular data sources or techniques used at each step. Blue
boxes represent datasets, yellow boxes represent feature selection techniques, green boxes represent
resampling techniques, and pink boxes represent models. Red box denotes final output used on
dashboard. Dashed horizontal line separates steps performed on historical weather datasets from steps
performed on current weather dataset.

Feature Selection192

We use two methods to select the optimal set of features from our historical weather dataset to193

predict flash floods. First, we compute a correlation matrix among all features and identify highly194

correlated features—which we define as features with |r| > 0.9—using the highlyCorrelated()195

function from the corrplot R package [25]. We remove highly correlated features from the historical196

weather dataset. Second, we use a recursive feature elimination algorithm to identify the features197

with the highest predictive power. Recursive feature elimination (RFE) works iteratively by fitting a198

machine learning model, ranking features’ importance, and removing the least important features until199

a specified number of features is reached. We implement RFE on our historical weather dataset using200

the rfe() function from the caret R package [26]. We identify the optimal features for models with201

between one and 12 features and compute the model accuracy on the historical weather dataset with202

10-fold cross-validation. We retain the optimal features from the model size that yields the highest203

cross-validation accuracy to produce a training dataset.204

Resampling205

The initial training dataset is highly imbalanced; only 7% of observations come from the206

positive class, which reflects the fact that most weather events in New England are not flash floods.207

Imbalanced datasets make classification tasks more difficult since most models often struggle to predict208

observations from the minority class correctly. One way to mitigate the effect of class imbalance is209

through resampling techniques, which balance the class distribution in the training dataset either210

by undersampling the majority class or oversampling the minority class. Since we do not want211

to reduce the size of our training dataset, we choose to use oversampling techniques. We test212

four oversampling techniques: Random oversampling, Synthetic minority oversampling technique213

(SMOTE), Borderline-SMOTE, and Adaptive synthetic oversampling (ADASYN), which we implement214

Rectangle



Version December 21, 2022 submitted to Journal Not Specified 9 of 18

using the smotefamily R package [27]. Random oversampling samples with replacement from the215

minority class so that there are equal numbers of observations from both classes. SMOTE balances216

the class distribution by creating synthetic minority class observations [28]. For a given minority217

observation, it identifies the five nearest neighbors that are also minority observations. Depending on218

the degree of class imbalance in the dataset, it randomly selects a subset of the neighbor observations219

and creates synthetic points along the lines in feature space between the original observation and the220

neighbor observations [28]. Borderline-SMOTE is a SMOTE variant that works similarly, except that it221

only creates synthetic examples from observations that are near the border between the majority and222

minority classes in feature space [29]. ADASYN also creates synthetic observations in a similar manner223

to SMOTE, except that the number of synthetic observations generated per minority observation224

depends on the class distribution of its surrounding observations [30]. First, ADASYN finds the class225

distribution among the five nearest neighbors to a minority example and calculates the proportion of226

majority examples in the neighborhood. This proportion controls the number of neighbor minority227

observations that are sampled to create synthetic observations, such that more synthetic observations228

are created around isolated minority observations. Intuitively, this means that the ADASYN algorithm229

balances the class distribution by focusing on ‘hard to learn’ observations [30].230

Model fitting231

We test two types of supervised classification models on the training dataset. The first is a232

support vector machine (SVM). For a dataset with N features, an SVM attempts to find a hyperplane in233

N-dimensional space that separates the two classes in a dataset [31]. The second classification model234

is a random forest classifier. Random forest is an ensemble method, meaning that its prediction for235

an observation is an aggregate of multiple individual models’ predictions for the same observation.236

The individual models in Random Forest are decision trees, which are flowchart-like structures in237

which each node represents a feature, each branch represents a decision rule, and each leaf represents238

an outcome [32]. Random Forest builds a specified number of decision trees to make predictions for239

observations in the training dataset, and averages the outcomes to obtain a final prediction for a given240

observation. We apply each model to the training dataset and make predictions on the testing dataset241

using 10-fold cross validation. We measure the true positive rate, true negative rate, false positive242

rate, false negative rate, and balanced accuracy for each model. True positive rate is the proportion243

of positive testing examples that are correctly predicted, and true negative rate is the proportion of244

negative testing examples that are correctly predicted. Conversely, false positive rate is the proportion245

of negative testing examples that are incorrectly predicted, and false negative rate is the proportion246

of positive testing examples that are incorrectly predicted. Balanced accuracy, which is the average247

of the true positive and true negative rates, is a more useful metric for imbalanced datasets than true248

accuracy, since it captures performance on both classes.249

Hyperparameter Tuning250

We define the optimal hyperparameters for a model as those which maximize its balanced251

accuracy. We select optimal hyperparameters using a grid search, which tests all possible combinations252

of supplied hyperparameter values. For the SVM classifier, we optimize three hyperparameters:253

kernel, gamma, and cost. The kernel choice determines the shape of the hyperplane that forms the254

decision boundary. The gamma parameter controls the curvature of the decision boundary, and is255

applicable only to non-linear kernels. The cost parameter controls the strictness of the model penalty256

for misclassification. For the Random Forest classifier, we optimize two hyperparameters: number of257

trees and mtry. Number of trees controls the number of decision trees that are built and averaged to258

determine a final prediction. Mtry controls the number of features that are sampled at each split in the259

decision tree.260
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3.2.2. Integrating current weather conditions261

In order to integrate the current weather conditions we utilize the National Weather Service’s262

(NWS) API, as detailed in the following section.263

Accessing National Weather Service API264

To apply our predictive model to real time weather data, we use the National Weather Service’s265

weather observations API. We call the API on each of Massachusetts’ 26 weather observation zones.266

Each API call for a zone yields the current weather conditions for each of the many weather stations267

within the given zone. We specifically retrieve two different attributes for each station: temperature268

(which we convert from Celsius to Fahrenheit), and precipitation in the last hour. Since our goal is to269

predict flash flood risks at the county level, we average the observations for every weather station in270

a county. After obtaining and processing current weather conditions from the NWS API, we add in271

variables for location and date and time that the data was gathered. Thus, we have a dataset with the272

same features as our training dataset for the predictive model.273

Predicting flash flood risks274

We generate real-time flood risk predictions at a county level in Massachusetts. When a user275

loads the dashboard, we call a single function that completes the API calls and data processing tasks276

described above to output a dataset with temperature and precipitation in the past hour by county.277

We add additional variables relating to event timing such that the current weather dataset has the278

same set of features as our flood modeling training dataset. We load the tuned classification model279

optimized to historical storm data and generate a binary prediction per county, denoting whether280

or not the current weather conditions pose a flash flood risk in that county. We add this prediction281

variable to the dataset with timing and weather conditions and return this dataset so it can be used as282

a layer on the dashboard.283

4. Results284

4.1. Displaying data285

To display data regarding natural disasters to our users we develop a Shiny dashboard with an286

integrated Leaflet map. Figures 5 and 6 show the two main tabs of the dashboard. Fig. 5 depicts the287

main panel where users can interact with the different map layers, and Fig. 6 shows the second tab288

where users can learn more about the data sources incorporated into the dashboard. The user can289

interact with the check boxes on the left side of the panel and add/remove the different data layers to290

the map. For all of the layers, users can interact with it by clicking on a data point on the map and a291

popup will appear showing the location of the data point and the specific value of the data point for292

that layer. An image of each of the data layers can be found in the Data section of this paper along293

with its description. We also published our dashboard on the shinyapps.io server so it is accessible to294

the public. After analyzing our dashboard, we propose a few areas of significance to disaster relief295

personnel. These areas might either be more prone to a natural disaster or be more susceptible to296

damage if a natural disaster did occur. Fairfield CT, Essex, MA, Middlesex, MA, and Worcester, MA297

have a high population and have had frequent floods since 2018, which makes them potential areas of298

interest. It’s worth noting that we are only measuring the frequency of floods, not how much damage299

floods do. Different magnitudes of floods can have drastically different effects, so this is only an300

approximation. There are also some counties throughout New England with high SVIs. This means301

that these communities are less resilient in the face of natural disasters and diseases, and could be302

more impacted by severe weather, so they are also points of interest for disaster relief personnel.303

4.2. Modeling flash flood risks304
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Figure 5. First tab of TSC Dashboard containing a Leaflet map and filters of the data

Figure 6. Second tab of TSC Dashboard with information about data sources

4.2.1. Training on historical weather events305

We develop a predictive model that can predict, at a county level, whether or not current weather306

conditions pose a flash flood risk. Our audience for this model are first responders who want to307

prepare their flood responses in advance once a weather event is imminent. Ideally, we want a model308

with high balanced accuracy that performs well for both classes in the dataset. A model with a high309

true positive rate, or recall, is desirable because it means first responders will enter the fewest flash310

flood events unprepared. A model with a high true negative rate is also desirable because it means311

that first responders will not waste resources or unnecessarily alarm the public when there is no flash312

flood imminent.313

Data314

Our initial training dataset contains 20 variables and 1,889 observations, each of which represents315

a weather event. Of all observations, 7% are flash floods, and 93% are not flash floods. All of the flash316

floods in this dataset occurred in either Connecticut, Massachusetts, or Maine, likely because these317

states have the largest coastlines. 31 flash floods occurred in Massachusetts, 82 in Connecticut, and 8 in318

Maine. Of the four years of weather events included in this dataset, the most flash floods happened in319

2021 (60), followed by 2018 (45). The most common times for flash floods to occur were during the320

months of September (57), July (35), August (22), and June (10). Only two flash flood events occurred321

outside these months, both during April. Given that flash flood events are restricted to only a subset322

of states and a subset of months during the year, we restrict the training dataset to weather events323

that occur during April through October and in Massachusetts, Connecticut, or Maine, reasoning that324

our model will likely yield more meaningful flash flood prediction results if it is trained on a more325

representative dataset of weather events that might be flash floods. After restricting this dataset, we326

are left with 1,202 observations.327

Rectangle



Version December 21, 2022 submitted to Journal Not Specified 12 of 18

Figure 7. Correlation matrix of training data features.

Feature selection328

We begin with a training dataset with 20 variables and 1,202 observations. When we compute a329

correlation matrix across all features (Fig. 7), we find that the variables denoting longitude, state, and330

minimum daily temperature have correlations greater than |0.9| with other variables. This makes331

sense intuitively because longitude is naturally highly correlated with latitude since we are focused on332

a small geographic area, and similarly, states are associated with particular counties and minimum333

temperatures are correlated with maximum temperatures. We concatenate state and county into a334

single numeric variable, since county codes are repeated across states and we want a unique identifier335

for each county. We remove the other highly correlated features from the training dataset, along with336

the ending time variable, which has a similar correlation pattern with the beginning time variable. We337

also remove the variable denoting the year of the weather event; this is ultimately not relevant since338

we hope to make predictions on current weather events beyond the end of 2021.339

We further restrict the feature set to the most informative features by performing recursive feature340

elimination with 10-fold cross validation. We find that a model with five features produces the highest341

cross-validation accuracy of 96% (Fig. 9). The five features are: daily precipitation, month, maximum342

temperature, day of the month, and beginning time. Intuitively, daily precipitation makes sense as343

an important feature for flash flood modeling, and as we described above, flash floods are usually344

restricted to a subset of months. The median daily maximum temperature is slightly lower for days345

with flash floods than days without flash floods (75º F vs. 80º F), although the overall distributions346

are similar across both classes. Furthermore, more floods overall have occurred at the beginnings and347

ends of the month in the past four years than dates in the middle of the month. Intuitively, since all of348

the flash floods in our training dataset occurred in states with large coastlines, it is possible that the349

timing of floods across the month is linked to tidal cycles. We display the relationships between each350

individual predictor and flash flood occurrence in Fig. 9.351

Modeling352

To develop our model, we split the dataset 60/40 into a training set and a testing set (Fig. 4). Each353

set has the same features. We develop and tune all combinations of two classification algorithms and354
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Figure 8. Cross-validation accuracy as a function of number of features in a model. The particular
features at each model size were selected using Recursive Feature Elimination

Figure 9. Individual relationships between each model feature and flash flood occurrence. Barplots
display flash flood occurrence as a function of a given categorical feature, and boxplots compare the
distributions of numerical features between flash flood events and other weather events
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Table 2. SVM Classification Results. We test two different kernels—radial and linear—and tune the
gamma and cost hyperparameters; in all experiments we achieve the best accuracy with a radial kernel
and a gamma value of 10, and we achieve the best accuracy with a cost of 100 for all experiments except
SVM with Borderline-SMOTE resampling, where we use a cost of 10.

Resampling Balanced Accuracy True Positive Rate True Negative Rate
None 71% 42% 99%
Random Oversampling 72% 48% 97%
SMOTE 75% 52% 98%
ADASYN 78% 58% 98%
Borderline-SMOTE 78% 58% 98%

Table 3. Random Forest Classification Results

Resampling Balanced Accuracy True Positive Rate True Negative Rate Mtry Number of Trees
None 86% 75% 96% 3 700
Random Oversampling 85% 74% 96% 4 200
SMOTE 75% 61% 96% 1 100
ADASYN 80% 65% 96% 2 300
Borderline-SMOTE 85% 75% 95% 2 200

four resampling techniques to find the model that will have the highest flash flood prediction accuracy.355

For SVM classifiers, we find that the radial kernel always produces superior performance, indicating356

that our data does not have a linear decision boundary. We achieve maximum performance when357

we use the ADASYN algorithm to balance the class distribution in the training dataset. The model358

achieves an 78% balanced accuracy, with a 58% true positive rate and 98% true negative rate (Table 2).359

In this context, the model correctly predicts 58% of flash flood events and correctly predicts 98% of360

non-flash-flood weather events. The optimal parameters for this model are a gamma value of 10 and a361

cost value of 100. With a RandomForest classifier, interestingly, we achieve maximum performance362

when we do not use resampling techniques. Without resampling, with an mtry value of 3, and with363

700 decision trees, we achieve 86% balanced accuracy, with a 75% true positive rate and 96% true364

negative rate (Table 3). While the true negative rate is slightly lower for RandomForest than it is for365

SVM, RandomForest achieves a substantially better recall, which is important for our use case. Since it366

produces a higher balanced accuracy, we use the optimal RandomForest model to make flash flood367

predictions for current weather conditions.368

4.2.2. Integrating current weather conditions369

Each time a user loads the dashboard, we call a single function that retrieves a dataset of current370

temperature and precipitation conditions in Massachusetts from the NWS API. The function then371

averages these conditions by county, and we add additional date/time variables so that we are left372

with a dataset containing the same features as our training dataset of historical data. Using the373

tuned RandomForest model described above, we predict whether or not each Massachusetts county374

is currently at risk of a flash flood. The binary prediction results are a layer that users can view on375

the dashboard. During development, we validated the temperature and precipitation measurements376

that we retrieve against reports from The Weather Channel to ensure that our API calls are accurate.377

During the development period (late November - early December 2022) our model did not predict that378

any county was at risk of a flash flood; this validates the low false positive rate we obtained during379

our training process. In order to ensure that our model can make positive predictions, we generate a380

simulated dataset that reconstructs the weather conditions on July 17, 2018, during which flash floods381

occurred in Worcester and Suffolk Counties. We find that our model correctly predicts flash flood risks382

in these counties (Fig. 10).383
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Figure 10. Reconstruction of the flash flood prediction dashboard layer on July 17, 2018, during which
flash floods occurred in Worcester and Suffolk counties.

4.3. Case Study: Worcester County, MA384

A potential use of our dashboard is to highlight possible areas of interest for natural disasters that385

emergency relief workers should pay attention to. Overlaying the layers on the dashboard can point386

out vulnerable areas. For example, Worcester County, MA has a SVI of .6923, 27 floods since 2018,387

a population density of 570.68 people per square mile, and a median household income of $79,142.388

Worcester has over 100 high-hazard dams (indicated by red dots on the dashboard), 45 EPA Superfund389

Sites, and 10 landfills.390

On July 17, 2018, Worcester County had a devastating flash flood, shortly before the evening rush391

hour commute. Storm drains failed leading to flooded streets, sweeping away debris and dirt, and392

surrounding cars. With mass power outages impacting more than 3,000 households, civilians were left393

stranded and unprepared.394

If any of the many high-hazard dams failed on this day, the consequences would have been395

devastating. Landfill sites, of which Worcester has many, have increased ground erosion, as well396

as an increased likelihood of leaching waste into the surrounding area. Superfund sites are already397

vulnerable to flooding, as they contain some of the most contaminated environments. As a county,398

Worcester has a high number of all of these potentially destructive areas. After inputting the weather399

data from the day of incidence, our dashboard’s model would have predicted the Worcester County400

flash flood, and could have better prepared households and emergency response workers to mitigate401

the effects on their neighborhoods and the environment.402

5. Discussion403

Here, we consolidate relevant landmarks, demographic, and weather datasets into an interactive404

dashboard designed to help emergency responders in New England make data-driven decisions405

on where to direct time and resources during a natural disaster. By combining different datasets406

containing locations of environmental hazards and social vulnerability metrics, we can show first407

responders where multiple features overlap and elevate risks from severe weather. We also develop a408

RandomForest model that provides accurate, real-time predictions of flash flood risks at a county level409

in Massachusetts. Lastly, we use Worcester County, MA as a case study to illustrate the benefits that410

our product can provide to local emergency workers.411

We overcame several challenges in the making of this dashboard. We experimented with other412

map layers that we ultimately did not incorporate because of missing data; for instance, we hoped413

to visualize hurricane/tsunami evacuation routes in each NE state but these are only available for414

Connecticut. This reflects a broader dilemma that other developers face, which is that the rich data415

sources needed to build a compelling dashboard do not always exist in regions that could benefit most416

from this product. Additionally, we navigated a data wrangling challenge when integrating current417

weather conditions from NWS into the dashboard. This dataset is quite large given the number of418
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weather stations within New England, which is why we focus on flash flood risks within Massachusetts419

as a proof-of-concept. Weather observation zones (which can contain many weather stations) do not420

always fit neatly within county boundaries, and the number of zones per county varies. By researching421

the locations of weather observation zones, we were able to match the relevant Massachusetts zones to422

a county, and average weather conditions across stations to yield county-level estimates.423

We note that there are several limitations and ethical considerations that are important to keep424

in mind when using the dashboard. For example, we use static datasets to visualize the landmarks425

and demographic variables on the dashboard rather than continuously retrieving current data via426

an API to reduce computational burden. While dam and landfill locations are constant, dam hazard427

status or waste in place at a landfill may change over time, so we cannot guarantee the most up-to-date428

information for those variables at all times. There are also several caveats to our predictive model.429

First, during the training process we restrict the training dataset to weather events within a subset430

of months and states—based on the distributions of where and when flash floods occurred between431

2018-2022—in order to reduce class imbalance. This makes the model’s predictions more accurate for432

the majority of flash floods, but it may result in poorer performance on rare flash flood events. For433

instance, under our model a flash flood in August on an 85º day has a better likelihood of detection434

than a flash flood in January on a 45º day. Second, since we average all current weather observations435

within a county and make predictions at a county level, our model may be less sensitive to localized436

extreme weather. Thus, we recommend that users keep these limitations in mind when preparing for437

flash flood conditions, and supplement our dashboard with more granular weather forecasts.438

There are some ethical considerations in the usage of our dashboard. The primary purpose of this439

dashboard is to inform relief workers of relevant weather conditions and environmental hazards, and440

to make sure that resources are going to communities that face the greatest health and property risks. If441

the data sources and/or models are flawed, we risk promoting an inequitable distribution of resources.442

This is one of the reasons why we chose to use open-access datasets, primarily from governmental443

sources where we can access information about how the data were collected. However, we cannot444

guarantee that the sampling or surveying processes used to collect these datasets were unbiased. There445

is also the low possibility of false positives under our flash flood model, which could waste emergency446

responders’ time and resources and create unnecessary public alarm. This is why we optimized our447

models to have high prediction accuracy for flash flood and non-flash-flood events. Finally, there is the448

consideration of how responders would use the data, possibly ignoring which communities are most449

vulnerable and instead choosing to prioritize areas where they are more concerned about monetary450

losses.451

Future directions for this project include expansion of our flash flood modeling, seasonal452

customization, and integration of social media trends. We would like to extend our flash flood453

predictions, which we currently restrict to MA counties, to the rest of NE states. It would also be454

interesting to make more granular predictions, such as flash flood risks at a zip code level, which455

Company employees have successfully implemented in Florida using similar model features. From a456

technical standpoint, this extension is feasible for NE states. However, we anticipate that our training457

data may be insufficient, since flash floods are rare in most NE areas, especially compared to Florida458

where tropical storms are more frequent. Additionally, since New England experiences extreme459

seasons, there are distinct types of natural disasters that relief workers must prepare for. Here, we460

primarily highlight variables relevant for flooding events, which tend to occur in warmer months.461

We would like to add additional layers and filters to the dashboard so that users can customize it to462

the season. For instance, we could implement a similar predictive model to visualize which regions463

are at risk of heavy snowfall. We could add more landmarks such as the locations of shelters where464

people can find warmth and resources in the event of a wintertime power outage. Lastly, since socially465

vulnerable communities face greater risks during a disaster and may be overlooked by mainstream466

media coverage, social media updates could be a valuable source of insight into these communities’467
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needs. We would like to mine geotagged posts via the Twitter API to display which hashtags and468

topics are trending in a given region during extreme weather events.469

Abbreviations470

The following abbreviations are used in this manuscript:471

472

NOAA National Oceanic Atmospheric Administration
NE New England
MRLC Multi-Resolution Land Characteristics Consortium
NWS National Weather Service
SVM Support Vector Machine
SVI Social Vulnerability Index

473
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